Phase I Cultural Resource Assessment for the Tentative Tract Map 20275 Project, City of Victorville, San Bernardino County, California

Kholood Abdo

Prepared By
Applied EarthWorks, Inc.
3550 E. Florida Ave. Suite H
Hemet, CA 92544-4937

Prepared For
KB Home
36310 Inland Valley Drive
Wildomar, CA 92595

October 2019
draft

USGS 7.5' Topographic Quadrangles: Baldy Mesa, CA
Level of Investigation: CEQA Phase I
Key Words: San Bernardino County; CEQA; 40 acres
 MANAGEMENT SUMMARY

KB Home Southern California/Coastal (KB Home) proposes the construction of a 135-lot residential housing tract complex (Project) on approximately 40 acres of vacant land within Assessor’s Parcel Number (APN) 3133-111-01. The parcel is located in the southeast quadrant of the intersection of Monte Vista and Luna roads in the City of Victorville, San Bernardino County, California. It is located in the southwest quarter of Section 29, Township 5 North, Range 5 West on the Baldy Mesa U.S. Geological Survey (USGS) 7.5-minute topographic quadrangle map. Under contract to KB Home, Applied EarthWorks, Inc. (Æ) conducted a Phase I cultural resource investigation of the Project in accordance with the California Environmental Quality Act (CEQA). The City of Victorville is the lead agency for compliance with CEQA.

This report summarizes the methods and results of the Phase I cultural resource investigation of the Project area. Æ’s assessment included a records search and literature review, a Sacred Lands File (SLF) search with the Native American Heritage Commission (NAHC), and an archaeological survey of the Project area. The purpose of the investigation was to determine the potential for the proposed Project to impact historical resources eligible for or listed on the California Register of Historical Resources (CRHR).

The literature and records search performed by the South Central Coastal Information Center (SCCIC) of the California Historical Resources Information System (CHRIS), including a 1-mile wide buffer (Study Area), indicates three previous cultural resource investigations and seven cultural resources are documented within the Study Area. A segment of one of these previously recorded cultural resources, the historical Tejon Road-Lane’s Cutoff (36-004418 [CA-SBR-4418H]), is located within the northwest corner of the Project area. This resource had been formally evaluated by previous investigators and recommended ineligible for listing on the CRHR. The SLF search with the NAHC was completed with negative results.

Æ archaeologists Evan Mills and Andrew DeLeon completed an intensive pedestrian surface survey of the Project area on September 26, 2019. An attempt was made to re-identify the segment of CA-SBR-4418H previously documented within the Project area. However, this resource (Tejon Road-Lane’s Cutoff wagon road) was not re-identified in the Project area during Æ’s survey. No additional cultural resources were encountered within the Project area during the Phase I survey.

The ground surface throughout the entire Project area has been disturbed by modern dumping. Helendale loamy sands are mapped across the Project area; this soil series does not include a buried A horizon. Therefore, intact and significant buried archaeological deposits are unlikely, and no further cultural resource management of the Project area is recommended.

Field notes and photographs documenting the current investigation are on file at Æ’s Hemet office. A copy of this report also will be submitted to the SCCIC.
CONTENTS

1 **INTRODUCTION**
 1.1 PROJECT LOCATION AND DESCRIPTION ... 1
 1.2 REGULATORY CONTEXT .. 1
 1.3 REPORT ORGANIZATION ... 4

2 **SETTING**... 5
 2.1 ENVIRONMENTAL SETTING ... 5
 2.2 PREHISTORIC SETTING ... 7
 2.2.1 Terminal Pleistocene (circa [ca.] 12,000 to 10,000 cal B.P.) 7
 2.2.1.1 Paleo-Indian Complex .. 8
 2.2.2 Early Holocene (ca. 10,000 to 8500 cal B.P.) 8
 2.2.2.1 Lake Mojave Complex ... 8
 2.2.3 Middle Holocene (ca. 8500 to 4000 cal B.P.) 9
 2.2.3.1 The Pinto Complex .. 9
 2.2.3.2 The Dead Man Lake Complex ... 9
 2.2.4 Late Holocene (ca. 4000 cal B.P. to Contact) 10
 2.2.4.1 Gypsum Complex (4000 to 1800 B.P.) 10
 2.2.4.2 Rose Spring Complex (1800 to 900 B.P.) 11
 2.2.4.3 Late Prehistoric Complex (900 B.P. to Contact) 12
 2.3 ETHNOGRAPHIC SETTING ... 13
 2.3.1 Serrano ... 13
 2.4 HISTORICAL SETTING ... 15
 2.4.1 Spanish Exploration and Mission Development: 1771 to 1821 15
 2.4.2 Arrival of the Mexican Rancho: 1821 to 1848 16
 2.4.3 American Intrusion and Subsequent Development: 1848 to Present 17

3 **SOURCES CONSULTED**... 20
 3.1 CULTURAL RESOURCE LITERATURE AND RECORDS SEARCH 20
 3.2 SACRED LANDS FILE SEARCH ... 21

4 **CULTURAL RESOURCE SURVEY METHODS AND RESULTS** 22
 4.1 SURVEY METHODS ... 22
 4.2 SURVEY RESULTS .. 22

5 **MANAGEMENT RECOMMENDATIONS** ... 24

6 **REFERENCES**... 25
APPENDICES

A Sacred Lands File Search
B Cultural Resource Site Record Update

FIGURES

1-1 Project vicinity map .. 2
1-2 Project location map ... 3
4-1 Overview from the center of the Project area (facing west) ... 23
4-2 Modern refuse in the southwest corner of the Project area (facing north) 23

TABLES

3-1 Previous Cultural Resource Investigations in the Study Area .. 20
3-2 Cultural Resources within the Study Area .. 20
INTRODUCTION

KB Home Southern California/Coastal (KB Home) proposes the construction of a 135-lot residential housing tract complex (Project) on approximately 40 acres of land within Assessor’s Parcel Number (APN) 33133-111-01. The parcel is in the City of Victorville, San Bernardino County, California. Applied EarthWorks, Inc. (Æ) completed a cultural resource constraints analysis for the Project area in August 2017. The analysis included a records search at the South Central Coastal Information Center (SCCIC) and a Sacred Lands File (SLF) search by the Native American Heritage Commission (NAHC). The City of Victorville (City), who is the lead agency for the purposes of the California Environmental Quality Act (CEQA), is now requesting a complete Phase I cultural resource study of the Project area. KB Home retained Æ to conduct a Phase I cultural resource investigation of the Project for compliance with CEQA.

Æ Managing Principal, M. Colleen Hamilton, M.A., R.P.A. (#10535), served as Æ’s principal investigator and was responsible for overall quality control. Æ Associate Archaeologist Joan George, B.S., served as project manager. Fieldwork was conducted by Æ Associate Archaeologists Evan Mills, M.A., RPA (#18026) and Æ Staff Archaeologist Andrew DeLeon, M.A.

1.1 PROJECT LOCATION AND DESCRIPTION

The Project is in the western portion of the City of Victorville (Figure 1-1) west of Highway 395. Specifically, the Project is located in the southeast quadrant of the intersection of Monte Vista and Luna roads within the southwest quarter of Section 29, Township 5 North, Range 5 West, San Bernardino Baseline and Meridian, as shown on the Baldy Mesa, California 7.5-minute U.S. Geological Survey (USGS) topographic quadrangle map (Figure 1-2). Elevations range from approximately 3,255 to 3,278 feet above mean sea level (amsl).

The Project, Tentative Tract Map 20275, consists of approximately 40 acres of vacant land proposed for development of 135 residential housing units, each with a minimum lot size of 7,200-square-feet, and one open space “Lot D” designated for a stormwater retention basin in the northeast portion of the Project area. Grading, excavation, and sediment removal will occur to approximately 4 feet depth below the existing ground surface (bgs); however, in some locations, depths of sewer trenches may reach a maximum of 8 feet bgs.

1.2 REGULATORY CONTEXT

The Project requires review and approval from the City and is therefore subject to the requirements of CEQA. The CEQA Statute and Guidelines direct lead agencies to determine whether a project will have a significant impact on historical resources. Under CEQA, a cultural resource considered “historically significant” is a “historical resource,” if it is included in a local register of historical resources, listed in or determined eligible for listing on the
Figure 1-1 Project Vicinity map.
Figure 1-2 Project location map.
California Register of Historical Resources (CRHR), or meets the requirements for listing on the CRHR under any one of the following criteria of historical significance (Title 14, California Code of Regulations [CCR], § 15064.5):

1. Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage;
2. Is associated with the lives of persons important in our past;
3. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or,
4. Has yielded, or may be likely to yield, information important in prehistory or history.

Compliance with CEQA’s cultural resource provisions typically involves several steps. Briefly, archival research and field surveys are conducted, and identified cultural resources are inventoried and evaluated in prescribed ways. A prehistoric and historical archaeological site, standing structure, building, or object deemed by the lead agency to be a historical resource must be considered in project planning and development.

A project with an impact that may cause a substantial adverse change in the significance of a historical resource is a project that may have a significant impact on the environment (14 CCR § 15064.5[b]). The lead agency is responsible for identifying potentially feasible measures to avoid, minimize, or mitigate significant impacts in the significance of a historical resource (14 CCR § 15064.5[b]4).

1.3 REPORT ORGANIZATION

This report documents the results of a cultural resource investigation of the Project area. Chapter 1 has described the Project and its location, defined the scope of cultural resource investigation, and stated the regulatory context. Chapter 2 summarizes the natural and cultural setting of the Project area and surrounding region. Chapter 3 presents the results of the archaeological literature and records search review and the SLF search through the NAHC. The cultural resource survey methods and results are discussed in Chapter 4. Cultural resource management recommendations are provided in Chapter 5, and bibliographic references are cited in Chapter 6. Results of the SLF search with the NAHC are included in Appendix A and the State of California Department of Parks and Recreation (DPR) Series 523 Primary and Archaeological Site Record (DPR Form) is included in Appendix B.
2

SETTING

This chapter describes the prehistoric, ethnographic, and historical cultural setting of the Project area to provide a context for understanding the nature and significance of cultural properties identified within the region. Prehistorically, ethnographically, and historically, the nature and distribution of human activities in the region have been affected by such factors as topography, climate, and the availability of water and natural resources. Therefore, prior to a discussion of the cultural setting, the environmental setting of the area is summarized below.

2.1 ENVIRONMENTAL SETTING

The Project area is located along the west side of the Mojave River in the Victor Valley in the western Mojave Desert of Southern California. This area is characterized by interior-draining basins and ranges. For the most part, the western Mojave Desert is hydrated by a playa system consisting of three primary lakebeds—Rosamond, Rogers, and Buckhorn—surrounded by a number of smaller playas. The three larger playas lie within Edwards Air Force Base. Today these lakebeds are usually dry, only occasionally covered in water following large winter storms. The principal drainage in Victor Valley, as well as the western Mojave Desert, is the Mojave River. The Mojave River drains the San Bernardino Mountains and flows north and east to Soda Lake, near Baker, California. During the last glacial maximum in the Late Pleistocene, the Mojave River flowed farther north, merging with the Amargosa River and ultimately flowed into Death Valley and Lake Manly. At one time, this drainage system included Lake Manix and Lake Mojave. Lake Manix encompassed Afton, Troy, Coyote, Harper, and Cronese basins; and Lake Mojave included the Soda Lake and Silver Lake basins (Parsons 2004:15).

The western Mojave Desert lies in the rain shadow of the Sierra Nevada, Tehachapi Mountains, San Gabriel Mountains, and the San Bernardino Mountains. The rainfall in Victorville averages 5.48 inches annually, most of which occurs during the months of December through April, while some isolated thunderstorms may occur in July and August. Humidity is generally extremely low except during the brief period of thunderstorms during the summer months of July and August. Characterized by a mid-latitude, desert-type climate with cool, slightly moist winters and dry, hot summers, temperatures range from well below freezing in the winter to 100 to 110 degrees Fahrenheit in the summer.

During the Late Pleistocene, the deserts contained woodlands; basins were joined by rivers; and herds of horses, camels, and mammoths roamed the fertile basins. As the glaciers retreated under comparatively warm conditions between 12,100 years before present (B.P.) and 10,100 B.P., both vegetation and animals began to move to higher elevations. The subsequent climatic history of the Mojave Desert was characterized by alternating cool, moist periods and warm, dry periods (Wells et al. 1989). Based on analyses of ancient lakebed sediments, a long history of wet-to-dry cycles has been postulated, and Wells and others (1989) concluded that wet periods occurred approximately 390 B.P., 3600 B.P., 13,700 B.P., and between 18,400 and 16,600 B.P; dry periods existed 8700 B.P. and 15,500 B.P.
The alternating wet and dry periods would have affected other aspects of the desert. Lake development would occur during wet periods, promoting the range expansion of plants and animals. As drying periods began, lakes would recede first to form marshes and then dry playas, resulting in plants and animals dying off or adapting to more arid conditions. Due to these climatic fluctuations in the southern portions of the Mojave Desert, the floral and faunal composition of the region is believed to have not become established until after 4300 B.P., during the Late Holocene. Thus, based on research from pollen records and pack rat middens, it is believed that the low-elevation woodlands of the western Mojave Desert were replaced by desert vegetation between 12,000 and 8,000 years ago (Earle et al. 1997; Mehringer 1967; Van Devender and Spaulding 1979).

Vegetation in the general vicinity of the Project area is currently composed of Mojave Desert scrub from the saltbush scrub (halophytic and arid phases), creosote bush scrub, Joshua tree and juniper Woodland, and Wash Wetland or Mesquite vegetation communities (Earle et al. 1997; Sawyer 1994; Vasek and Barbour 1977). Victor Valley is dominated by the creosote bush community, which consists of widely spaced shrubs and cacti. Common plant species of this community include creosote bush (*Larrea divaricata*), yucca (*Yucca brevifolia, Y. schidigera*), Mormon tea (*Ephedra* sp.), bursage (*Ambrosia dumosa*), range ratany (*Krameria erecta*), and galleta grass (*Hilaria rigida*). Numerous plant species in all the vegetation communities listed above were utilized as foods and medicines, or provided materials for making bows, arrows, baskets, cordage, digging sticks, houses, or fuel for the local Native American inhabitants of the general region.

The region also provided habitat for a variety of animals, including birds, insects, reptiles, rodents, pronghorn antelope, bighorn sheep, coyote, and fox, which may have been hunted by the local Native American inhabitants of the general region for both food and materials for clothing, shelter, and ceremonial regalia (Earle et al. 1997). Mammals include blacktail jackrabbit (*Lepus californicus*), desert cottontail (*Sylvilasus audubonii*), Botta pocket gopher (*Thomomys bottae*), Panamint kangaroo rat (*Dipodomys panamint Mojavensis*), Merriam kangaroo rat (*Dipodomys merriami*), and coyote (*Canis latrans*), while bird species include rock dove (*Columbia livia*), lark (*Eremophila alpestris*), raven (*Corvus corax*), and black-throated sparrow (*Amphispiza bilineata*). In addition, desert tortoise (*Gopherus agassizi*) is found in the Victor Valley, as are a variety of snakes and lizards.

Soils in the Project area as mapped by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) consist of Helendale loamy sand (Web Soil Survey 2019). The Helendale series consists of very deep, well drained soils that formed in alluvium from granitoid rocks. Helendale soils are on fan piedmonts, fan remnants, alluvial fans, and terraces. Slopes range from 0 to 15 percent and elevation is 3,220 feet above mean sea level (USDA 2019a).

The Helendale official series description states the typical pedon consists of a thin (0–4 inches) A horizon of very pale brown (10YR 7/4) loamy sand, underlain by very pale brown (7.5YR 5/4 and 4/4 and 10YR 5/3) Bt1 through BTS sand loam horizons to a depth of 48 inches, which grade to 19 inches of light yellowish-brown (10YR 6/4) sandy loam. This is underlain by C horizons pale brown yellow (10YR 7/6) loamy sand, which begins at a depth of 66 inches (USDA 2019b). No Ab horizon is described for the Helendale soil series.
The maximum depth of proposed disturbances (8 feet) will penetrate far below the maximum depth recorded for the typical pedon. Therefore, intact and significant buried cultural deposits are unlikely in the Project area.

2.2 PREHISTORIC SETTING

The lack of a wholly adequate culture history for interior valley and mountain portions of Southern California can be attributed to at least three major factors: (1) the nature and scope of investigations in the region, where research has been concentrated for the most part at single sites or on specific problems; (2) the complex historical sequence of investigations and discoveries, combined with a tendency on the part of many authors to explain similarities in assemblages to cultural diffusion; and (3) the confusion of typological and chronological terminology, which has led to ill-defined units that alternately describe time periods, tool morphology, social groupings, or technological adaptations. A prime example of muddled nomenclature is the “Milling Stone Horizon,” first defined by Wallace (1955); this term has been applied variously to sites dating between 8400 B.P. and the period of Spanish contact. Basgall and True (1985) provided a particularly cogent critical review of Southern California chronologies, emphasizing the “Milling Stone Horizon” concept, tracing the development of the typological and chronological confusion inherent in existing culture histories.

The prehistoric cultural chronology for the region is most often based on the Mojave Desert chronology. The most widely cited prehistoric cultural framework for the California deserts was proposed by Claude N. Warren (1980, 1984; Warren and Crabtree 1986). Warren’s framework for human history in the Mojave Desert divided prehistory into five distinct archaeological periods associated with changes in climate related to the terminal Pleistocene and Holocene epoch. These include Lake Mojave, Pinto, Gypsum, Saratoga Spring, and Shoshonean (or Late Prehistoric) periods. Claims have also been made for archaeological assemblages dating to periods earlier than Lake Mojave, but as Warren and Crabtree (1986) note, all are controversial and, even if valid, have little or no relationship to later cultural developments in the region.

Sutton et al. (2007) recently expanded on Warren (1984) to include elements more closely aligned to prehistoric cultural complexes of the Central Mojave Desert. Sutton et al. (2007) employ the term “complex” to emphasize cultural rather than temporal association, deferring temporal association to the term “period,” which they associate with geologic time. Subdivisions of the Mojave Desert cultural framework proposed by Sutton et al. (2007) include hypothetical “Pre-Clovis” and “Paleo-Indian” complexes, and the Lake Mojave, Pinto, Dead Man Lake, Gypsum, Rose Spring, and Late Prehistoric complexes.

2.2.1 Terminal Pleistocene (circa [ca.] 12,000 to 10,000 cal B.P.)

As the glaciers retreated under comparatively warm conditions between 12,100 B.P. and 10,100 B.P., both vegetation and animals began to move to higher elevations. Paleoenvironmental, paleobotanical, and geomorphologic investigations reveal that the climate, vegetation, and landscape across the North American continent, including the inland Southern California region, changed dramatically at the end of the Pleistocene, from wet and cool conditions to a drier and warmer regime (Anderson 2001; Onken and Horne 2001; Spaulding 2001). In very general terms, the desert interior may have been more productive and more attractive to prehistoric
groups than the inland areas farther to the west and south during the Early Holocene (ca. 10,000–8000 B.P.).

2.2.1.1 Paleo-Indian Complex

The Paleo-Indian complex within the Mojave Desert is thus far represented exclusively by Clovis material culture, though the relationship with later Great Basin stemmed series points is also a consideration. Some early researchers pose the theory of two different traditions relating to interior and coastal adaptation during the Late Pleistocene to Early Holocene transition. Based on work in the Panamint Valley, Davis (1970) posited the theory of “Paleo-Desert,” a geographic distinction from Paleo-Indian sites of the “Paleo-Coastal” tradition. In the Paleo-Desert geographic region, Paleo-Indian sites are generally located along the shorelines of these ancient pluvial lakes (Davis 1970).

One common theme among nearly all Paleo-Indian complex sites in North America is the tool assemblage—fluted projectile points made from fine-grained lithic material, hafted to the end of a spear and launched using a throwing tool (atlatl). Fluted points, defined as a component of the Clovis material culture in California, have been found nearly throughout the entire state from coastal estuary environments to ancient Pleistocene lakeshores, which are now in desert areas. At least five sites near Cajon Pass containing fluted projectile points have been identified, suggesting an early occupation of approximately 12,000 B.P., which corresponds to the “hypothetical Pre-Clovis” complex (pre-10,000 B.P.) for San Bernardino County (Sutton et al. 2007:236). In addition to fluted points, the Paleo-Indian tool assemblage was composed mainly of scrapers, burins, awls, and choppers, all used for the processing of animal remains and foodstuffs.

2.2.2 Early Holocene (ca. 10,000 to 8500 cal B.P.)

As the climate changed, so did the distribution of floral and faunal communities and people living in the desert regions migrated toward the coastal region to exploit littoral resources. During periods of drought, human populations from the deserts may have moved toward the coast to exploit littoral resources. Economic activities of the Early Holocene were focused on the pluvial lakes and their environs where people could fish, take waterfowl and their eggs, gather aquatic plants, harvest mollusks, hunt for large and small game, etc. Very small numbers of ground stone artifacts suggest limited grinding of hard seeds (Sutton et al. 2007:234, 237), representing a shift to a more diversified and generalized economy (Sutton 1996:228). Milling slabs and handstones for seed processing are rare in Early Holocene sites relative to their abundance in later times, so milling of vegetation seems not to have been very important (Grayson 2011:295). The high incidence of exotic materials (including marine shell) bespeaks wider spheres of interaction than was seen previously. Sutton et al. (2007:237) interpret these and other data as indicators of “a forager-like strategy organized around relatively small social units.”

2.2.2.1 Lake Mojave Complex

A small frequency of ground stone implements is present during this time, from which limited hard seed grinding activities can be inferred (Sutton et al. 2007:234, 237) representing a shift
toward a more diversified and generalized economy (Sutton 1996:228). The high incidence of extra-local materials and marine shell is interpreted as wider spheres of interaction than witnessed previously. Sutton et al. (2007:237) interpret these and other data as indicators of “a forager-like strategy organized around relatively small social units.”

Cultural materials dating from this complex encompass the Playa cultures (Rogers 1939), the San Dieguito complex (Warren 1967), and the Lake Mojave complex (Warren and Crabtree 1986). This phase is considered ancestral to the Early Archaic cultures of the Pinto complex. The Lake Mojave assemblages (Campbell et al. 1937) include Lake Mojave series projectile points (leaf-shaped, long-stemmed points with narrow shoulders) and Silver Lake points (short-bladed, stemmed points with distinct shoulders). Other diagnostic items include flaked stone crescents; abundant bifaces; and a variety of large, well-made scrapers, gravers, perforators, and heavy core tools (Sutton et al. 2007:234).

2.2.3 Middle Holocene (ca. 8500 to 4000 cal B.P.)

This was a time of climatic conditions warmer and drier than had existed during the Ice Age or Early Holocene. The terms Altithermal, Hypsithermal, and Mid-Holocene Climatic Optimum (and others) have been proposed since the 1940s to refer to the long periods of sustained drought. Lake levels fell, marshes and streams dried up, and the range of xeric vegetation expanded while mesic biotic communities retreated to higher elevations. The net result was that the land’s carrying capacity for wildlife and humans declined substantially. Some parts of the Desert West may have been abandoned by people for long periods, while other areas witnessed a marked reduction of population density (Grayson 2011:302–307).

2.2.3.1 The Pinto Complex

The Pinto complex represents a broad continuity in the use of flaked stone technology, including less reliance on obsidian and cryptocrystalline silicates (CCS), as well as the prevalence of ground stone implements in the material culture (Sutton et al. 2007:238), which distinguishes it from the Lake Mojave complex. Warren (1984) argues that cultural adaptation to the changing desert environment between 7500 and 5000 B.P. may account for the material characteristics of the Pinto complex, which gradually replaced those of the preceding Lake Mojave complex. The age and motivations for technological adaptation noted in the Pinto complex remains one of dispute, as Sutton et al. (2007:238) cite recent work conducted on Fort Irwin and Twentynine Palms that produced radiocarbon dates as early as 8820 B.P. associated with Pinto complex assemblages, thus pushing back the inception of the complex coincidental with the Lake Mojave complex.

The Pinto complex is marked by the appearance of Pinto-series projectile points, characterized as thick, shouldered, expanding stem points with concave bases, as well as bifacial and unifacial core tools, and an increase in milling stones. Pinto points were typically produced by percussion reduction, with limited pressure retouch.

2.2.3.2 The Dead Man Lake Complex

Sutton et al. (2007) argue that this complex represents a local variation of the Pinto complex as suggested by archaeological discoveries in the Twentynine Palms area. The primary variation
between Pinto and the Dead Man Lake complex is the presence of small to medium-sized contracting stemmed or lozenge-shaped points, battered cobbles, bifaces, simple flaked tools, milling implements, and shell beads (Sutton et al. 2007:239).

2.2.4 Late Holocene (ca. 4000 cal B.P. to Contact)

Based on the current archaeological data, there appears to have been an occupational hiatus within the inland desert regions between the Middle and Late Holocene period; few sites have been found that date between 5000 and 4000 B.P. It is believed that climatic changes during this period resulted in hotter and drier conditions, which may have led to the abandonment of this region for approximately 1,000 years when people migrated to areas with more suitable climates (Sutton et al. 2007:241).

2.2.4.1 Gypsum Complex (4000 to 1800 B.P.)

Technologically, the artifact assemblage of the Gypsum Complex was similar to that of the preceding Pinto complex, although new tools were added either as innovations or as “borrowed” cultural items as adaptations to the desert environment. Gypsum Complex sites are characterized by medium- to large-stemmed and corner-notched projectile points, including Elko series, Humboldt Concave Base, and Gypsum styles. In addition, rectangular-based knives, flake scrapers, and occasionally, large scraper planes, choppers and hammerstones, handstones, and milling tools become relatively commonplace, and the mortar and pestle appear for the first time. Ritual activities became important, as evidenced by split-twig figurines (likely originating from northern Arizona) and petroglyphs depicting hunting scenes. Finally, increased contact with neighboring groups likely provided the desert occupants important storable foodstuffs during less productive seasons or years, in exchange for valuable lithic materials such as obsidian and CCS. Archaeological assemblages attributed to the Gypsum Complex have been radiocarbon dated to roughly 4000 B.P. to 1800 B.P.

Population increases and broadening economic activities characterize the Gypsum Complex. Hunting continued to be an important subsistence focus, but the processing of plant foods took on greater importance. Perhaps due to these new adaptive mechanisms, the increase in aridity during the Late Gypsum Complex (after ca. 2500 B.P.) seems to have had relatively little consequence on the distribution and increase in human populations (Warren 1984; Warren and Crabtree 1986). In addition to open sites, the use of rock-shelters appears to have increased at this time. Base camps with extensive midden development are a prominent site type in well-watered valleys and near concentrated subsistence resources (Warren and Crabtree 1986). Additionally, evidence of ritualistic behavior during this time exists through the presence of rock art, quartz crystals, and paint (Sutton et al. 2007:241).

Rock art suggests that the hunting of mountain sheep was important during the Gypsum Complex (Grant et al. 1968); mountain sheep and deer, rabbits and hares, rodents, and reptile remains are reported from Gypsum Complex sites in the central Mojave Desert (Hall and Basgall 1994). Evidence from the western Mojave Desert suggests that there was a major population increase ca. 3000 to 2300 B.P. (Gilreath and Hildebrandt 1991; Sutton 1988). A shift in subsistence orientation and mobility near the end of the Gypsum Complex is suggested, with
increased emphasis on the hunting of smaller mammals, perhaps coinciding with the introduction of bow and arrow technology (Basgall et al. 1986; Sutton 1996:234).

2.2.4.2 Rose Spring Complex (1800 to 900 B.P.)

The Rose Spring Complex is characterized by small projectile points, such as the Eastgate, Rose Spring, (and possibly ancestral Cottonwood series), stone knives, drills, pipes, bone awls, various milling implements, and marine shell ornaments; the use of obsidian (most notably Coso Obsidian) is prevalent in this complex (Sutton et. al. 2007:241). Smaller projectile points such as the types noted above appear to mark the introduction of a bow and arrow technology and the decline of the atlatl and spear weaponry (Sutton 1996:235). Sutton (1996) notes that Rose Spring Complex sites are common in the Mojave Desert and are often found near springs, washes, and lakeshores.

Subsistence practices during the Rose Spring Complex appear to have shifted to the exploitation of medium and small game, including rabbits/hares and rodents, with a decreased emphasis on large game. At the Rose Spring archaeological site, numerous bedrock milling features, including mortar cups and slicks, are associated with rich midden deposits, indicating that the milling of plant foods had become an important activity. In addition, evidence of permanent living structures are found during this time (Sutton et al. 2007:241). In the eastern Mojave Desert, agricultural people appear to have been present, as Anasazi populations from Arizona controlled or influenced a large portion of the northeastern Mojave Desert by 1300 B.P. (Sutton et al. 2007:242).

Warren (1984:420–424) contends that the Rose Spring Complex was marked by strong regional cultural developments (compare Saratoga Spring to Rose Spring) especially in the Southern California desert regions, which were heavily influenced by technology and style originating from the lower Colorado River area (termed by Warren as the Hakataya culture). Warren (1984) divided the Rose Spring (Saratoga Springs) into three, possibly four, regionally distinct cultural developments deduced from pottery types and projectile point styles: northwestern Mojave, eastern Mojave, southern desert, and possibly Antelope Valley (Warren 1984:420–424).

In the northwestern Mojave, the Saratoga Springs Period was marked by the dominance of Rose Spring and Eastgate arrow points over the earlier Elko and Humboldt-series dart points. With the exception of this technological change, there appears to have been a strong continuity of Gypsum Complex material assemblages in the northwestern Mojave.

In the eastern Mojave Desert, Anasazi interest in turquoise likely influenced populations living in the Mojave Desert as far west as the Halloran Springs area where hundreds of small turquoise mines existed. The presence of Anasazi pottery at many of the turquoise mines suggests that these mines initially were operated by the Anasazi between 1500 and 1300 B.P.

In the southern desert region, the impetus for change appears to have derived from Hakataya influences from the lower Colorado River, evidenced by the introduction of Buff and Brown Ware pottery and Cottonwood and Desert Side-notched projectile points. The initial date for the first Hakataya influence on the southern Mojave Desert remains unknown; however, it does appear that by 1200 to 1000 B.P., the Mojave Sink was heavily influenced, if not occupied by,
lower Colorado River peoples. Additionally, trade along the Mojave River extended Hakataya influence west and appears to have blocked all Anasazi influence west of the Cronise Basin and south of the New York and Providence mountains by 1000 B.P.; this influence apparently continued well after the Saratoga Spring Period (Warren 1984:423).

The Rose Spring (Saratoga Spring) Complex is best characterized by cultural diversification with strong regional developments. Turquoise mining and long distance trade networks appear to have attracted both the Anasazi and Hakataya peoples into the California deserts from the east and southeast, respectively. Trade with the California coastal populations also appears to have been important in the Antelope Valley region and stimulated the development of large, complex villages. In the northwestern Mojave Desert, however, the basic pattern established during the Gypsum complex changed little during the Saratoga Spring Period. Toward the end of the Rose Spring/Saratoga Spring Complex, the Hakataya apparently moved far enough to the north to gain control of the turquoise mines, thus replacing the Anasazi occupation of the eastern California desert.

2.2.4.3 Late Prehistoric Complex (900 B.P. to Contact)

Late Prehistoric sites contain a significantly different suite of material culture than seen in the preceding archaeological complexes. Characteristic artifacts of the Late Prehistoric Complex include Desert-series projectile points (Desert Side-notched and Cottonwood Triangular), Brownware ceramics, Lower Colorado Buff Ware, higher frequencies of milling stones (e.g., unshaped handstones, mortars, and pestles), incised stones, and shell beads (Warren and Crabtree 1986). The faunal assemblages typically contain deer, rabbits/hares, reptile, and rodents. The use of obsidian dropped off during this time with the increased use of CCS.

Evidence of large occupation sites, representing semi-permanent and permanent villages, characterizes Late Prehistoric settlement strategies. Large, complex housepit village sites (e.g., Guapiabit in Summit Valley) were established along the headwaters of the Mojave River (Smith 1963) and were somewhat similar to those reported in Antelope Valley (Sutton 1981). Although both of these areas appear to have participated in extensive trade between the desert and the coast, the lack of Buff and Brownware pottery at the Antelope Valley sites suggests that these people were minimally influenced by the Hakataya developments along the Mojave River (Warren 1984:426).

The Late Prehistoric Complex marks an era of increased linguistic complexity within the Mojave Desert. One of the most important regional developments of the Late Prehistoric Complex was the apparent expansion of Numic-speakers (Shoshonean groups) throughout most of the Great Basin. Many researchers accept the idea that sometime around 1000 B.P., the Numa spread westward from a homeland in the southwestern Great Basin, possibly from Death Valley (Lamb 1958) or Owens Valley (Bettinger and Baumhoff 1982). While there is little dispute that the Numic spread occurred, there is much disagreement over its mechanics and timing (see Madsen and Rhode 1994).

Regional cultural developments established during the preceding Rose Spring Complex continued with some modifications. In the Southern Desert region (i.e., Colorado Desert; southeastern Mojave Desert), Brown and Buff Ware pottery, first appearing on the lower
Colorado River at about 1200 B.P., started to diffuse across the California deserts by about 1100 B.P. (Warren 1984:425). Associated with the diffusion of this pottery were Desert Side-notched and Cottonwood Triangular projectile points dating to about 850 to 800 B.P., suggesting a continued spread of Hakataya influences. This influence appears to have diminished during the late Ethnohistoric Period when the extensive trade networks along the Mojave River and in Antelope Valley appear to have broken down and the large village sites were abandoned. Warren (1984:428) provides two possible explanations for the disruption of trade networks: (1) the drying up of the lakes in the Cronise Basin; and/or (2) the movement of Chemehuevi southward across the trade routes during late Ethnohistoric times.

Recent research into the distribution of Desert Side-notched versus Cottonwood-series projectile points in San Diego County indicates a Hohokam influence on the Desert Side-notched series that was strong in traditional Tipai territory (southeast San Diego) and moderate in traditional Ipai territory (Central San Diego County), while Cottonwood dominated assemblages into traditional Luiseño territory to the north and west (Pigniolo 2004). The presence of Lake Cahuilla was a likely catalyst in the movement of the Desert Side-notched style to the northwest into traditional Cahuilla territory although this element of the Hakataya influence appears to have waned farther north as demonstrated by the complete absence of Desert Side-notched series projectile points from the Late Prehistoric occupation at Oro Grande.

2.3 ETHNOGRAPHIC SETTING

Historically, the Project area is located within Serrano territory. Altschul and others (1989) have provided a useful overview of the ethnographic land-use patterns, social organization, and early ethnohistorical interactions in Serrano territory. Pertinent aspects of this overview, along with ethnographic information obtained primarily from Strong (1929), Gifford (1918), Kroeber (1925), and Bean and Smith (1978) are presented below.

2.3.1 Serrano

The Serrano, or “mountaineers” in Spanish, occupied the territory of the San Bernardino Mountains east to Mount San Gorgonio, the San Gabriel Mountains west to Mount San Antonio, and portions of the desert to the north and the fringe of the San Bernardino Valley to the south (Kroeber 1925:615–616). Numbering no more than perhaps 1,500 people, the Serrano were scattered over a rugged, expansive landscape. The Serrano were Shoshonean peoples, speakers of languages in the Takic sub-family of the larger Uto-Aztecan language family (Kroeber 1925:578–579). Their most intensive cultural contacts were with the Pass Cahuilla, who occupied the territory to the southeast, and the Gabrielino, who occupied the lands westward to the Pacific coast.

There were numerous clans of Serrano across the Mojave Desert and the San Bernardino Mountains (Sutton and Earle 2017). The Serrano subgroup, known as Yuhaaviatam occupied the portion of the San Bernardino Mountains and adjacent valleys that encompass the Project area, and thus this term refers here to the smaller cultural unit.

Serrano clans were politically autonomous, although linked by ceremonial ties to other clans and peoples of other tribal groupings (i.e., the Cahuilla and Gabrielino). A moiety structure conditioned Serrano social life, all clans belonging to either the Coyote or Wildcat moiety, and
all spring ceremonial and mourning obligations extending to at least one other clan (Strong 1929:12–13). Exchanges of shell money between clans occurred during ceremonies, and contributions of shell money were made to mourning clan leaders by members of other clans on occasions of death. These moieties were exogamous, while clan organization was both patrilineal and exogamous. Although some have suggested that the clans were totemic, Gifford (1918:218) disagrees. Gifford attributes the patrilineal clan and moiety form of organization to links with southwestern tribes (Gifford 1918:218); others would identify Serrano organization as a typically Shoshonean social structure.

Each Serrano clan had a hereditary leader, or kika, and an assistant who was a ceremonial leader, or paha (Strong 1929:17–18). These individuals were central to the ritual life of the Serrano, providing leadership during yearly ceremonial periods. In the context of discussions concerning mourning ceremonies, Strong (1929:32) indicates, “Immediately after death, much of the property of the deceased was destroyed,” and Bean and Smith (1978:572) note that cremation was practiced concurrent with the destruction of most of the deceased’s possessions.

During the early historic era, Serrano peoples and their culture were dramatically affected by the Spanish mission system. San Gabriel Mission was established in 1771 in the Los Angeles area, and baptisms of Serrano individuals began by 1785. Much later, in 1819, a new mission was founded in the San Bernardino Valley at the Indian ranchería of Guachama. An irrigation ditch (the Mill Creek Zanja) was built with Serrano labor in 1819–1820, and agriculture became important in the valley. A more thorough review of relations between native inhabitants and early missionaries and explorers in the region is provided in the following sections.

In the late eighteenth century, the Mojave River formed portions of a major native travel and exchange corridor between the Colorado River and points east and the southern San Joaquin Valley and the Pacific Coast. The Vanyumé, now recognized as a desert division of the Serrano distinct from the Mountain Serrano (Sutton and Earle 2017), occupied the Mojave River portion of this corridor, while other culturally and linguistically distinct groups, such as the Chemehuevi had settled the desert region to the east of the Sinks of the Mojave, and the Desert Kawaiisu ranged to the north of the Mojave River. Mojave traders from the Colorado River traveled via this corridor to the southern San Joaquin Valley and coastal Southern California to acquire shell beads and other items for exchange (Earle 2005:1). Marine shell beads, particularly those made from the Olivella shell, and abalone ornaments were obtained directly from the Chumash-speaking groups of coastal Southern California; shell beads imported from Chumash territory could also be obtained from the Yokuts of the southern San Joaquin Valley (Earle 2005:12).

Regarding the use of the Mojave River as a trade/travel corridor, Earle states that “The late eighteenth century political geography of this area appears to have reflected the importance of this travel corridor to long-distance exchange, and particularly to the exchange involving Pacific coast shell beads which served as an important medium of exchange, and which were circulated far to the east of desert California” (Earle 2005:1).

Ethnohistorical information on the Mojave River area from the 1770s through the 1840s makes it clear that the Mojave River communities of the Vanyumé had developed long-standing political and social ties with the Yuman-speaking Mojave and functioned as intermediaries in the longer distance trade networks maintained by the Mojave. The Mojave lived in villages on terraces above the Colorado River to the east. The Mojave relied on the river floodplain for horticulture,
fishing, and gathering for subsistence. The Mojave are well known for their long-distance travel, utilizing the trade networks extending east to the Pueblos of Arizona and west to the Pacific coast (Bean and Vane 1978). The frequency of Mojave long-distance travel through the region created an unusual situation, as they often recognized sacred places that were located hundreds of miles to the west of their zone of settlement and flood farming on the Colorado River. The Mojave traders negotiating the Mojave River route relied on the Vanyumé for sustenance and shelter along the trek, as they did not carry their own supplies (Earle 2005:10; Harrington 1986:III:167:20). Gifts of shell beads and other goods were bestowed upon the Vanyumé as reciprocal exchanges for this hospitality, and cemented relationships between the two groups (Earle 2005:30).

Mortuary patterns also provide information on site ethnic affiliation. For instance, the Mojave were known for cremating their dead (Kroeber 1925), and the different Southern California Takic groups also practiced cremation. However, the ethnographic and ethnohistorical record for mortuary practices among some Takic groups is not as straightforward as some have assumed. For the Serrano, ethnographic testimony does not provide a completely clear picture of traditional practice. While it would be tempting to attribute all such ambiguity to the effects of Christianization and missionization in the eighteenth and nineteenth centuries, this is too simple a view.

Sites along the Mojave River, such as the historic Serrano ranchería of Guapiabit and the Siphon Site, both in Summit Valley, have yielded evidence of cremation (Earle et al. 1997:121, 124; Sutton et al. 1993:28). Inhumations have been reported at Turner Springs, north of Victorville, and at Lenwood (CA-SBR-1549), the latter being of apparent Late Prehistoric age (Moffitt and Moffitt 1993). At the easterly lower end of the Mojave River, at Cronise Lake, both inhumations and cremations from late contexts have also been reported (Thomas 2011:21). The presence of a range of different populations in the area could help to account for evidence of both primary inhumation and cremation during the ethnohistoric and historic periods.

2.4 HISTORICAL SETTING

2.4.1 Spanish Exploration and Mission Development: 1771 to 1821

The earliest significant moment in the recorded history of the area was the arrival of Portola’s former Lieutenant Pedro Fages who, as military governor, accompanied an expedition from San Diego in pursuit of deserters from the Presidio. Fages kept a journal which recorded that the party traveled along the west side of the San Jacinto Mountains to what is now Riverside, continued north into the San Bernardino Valley, and then crossed into the Mojave Desert by way of the Cajon Pass. The record of Fages’ transit across the Mojave Desert in 1772 is the first written account of the area to have survived into modern times.

The diary of Father Francisco Tomás Hermenegildo Garcés contains the second known reference to a historic visitation by Spanish to the Upper Mojave River region. In 1776, Garcés traveled west from the Mojave villages in the Needles area toward the Providence Mountains and the easterly lower end of the Mojave River (Earle 2005:7–8). Seeking a direct land route from Arizona and the Colorado River to Monterey, Garcés was accompanied by Mojave guides who had previously traveled to the coast, and a Southern California native who had lived at Mission San Gabriel. To date, Garcés’ journal of this expedition stands as the best of the very early
accounts of crossing the Mojave Desert, and his commentary on the native inhabitants of the region and the Spanish missionary view of them is invaluable in relaying local history (Arnold et al. 1987).

In the early 1800s, the Spanish increased their efforts to incorporate Native Americans into the mission system. As part of this endeavor, a series of explorations was undertaken into the Californian interior to identify possible locales for a chain of inland missions, which would run parallel to the coast chain (Berger 1941). One of these expeditions in 1806 was led by Father Zalvidea, who traveled through the Antelope Valley and recorded his visit to the Serrano villages of Amuscopiabit (Moscopiabit) and Guapiabit (Beattie and Beattie 1939:4).

Beginning in the 1800s, Native Americans residing in the Upper Mojave River region either were brought or came to the San Gabriel and San Fernando missions, established in 1771 and 1797, respectively. Although the Spanish were determined to gather all natives into the mission system, there are numerous examples of interior Native American villages not represented in the mission registers, suggesting low levels of interaction or influence prior to this time. As a side effect of the increased number of missions in Southern California, native neophytes attempted to escape missions by running away and seeking refuge with interior tribes, such as in the southern San Joaquin Valley or the Mojave Desert and adjacent mountains.

2.4.2 Arrival of the Mexican Rancho: 1821 to 1848

During Mexican rule (1821 to 1848), the Upper Mojave River region appears to have remained relatively outside the Hispanic frontier. The closest Hispanic settlement was the San Bernardino Asistencia mission outpost, which had been established at the Guachama ranchería in 1819 in the adjacent San Bernardino Valley. During the 1820s and early 1830s, the San Bernardino Asistencia was active, functioning as rancho headquarters. In October 1834, the Paiutes attacked the San Bernardino Asistencia, killing Christianized Indians and taking stored grain and altar vessels. They returned in December 1834, burned buildings, and took Father Esteneza hostage. This last attack, coupled with the decree of secularization, dealt the final blow to the San Bernardino Asistencia; it was abandoned shortly thereafter.

In 1826, Jedediah Strong Smith became the first American citizen to enter California overland. The trapper and mountain man reached the San Bernardino Valley by way of the Cajon Pass in 1826. He and his men were taken in and cared for at a rancho some 5 miles short of San Gabriel, where they gave themselves up to the Mexican authorities. Smith’s party left San Gabriel, apparently for his Salt Lake camp, on January 18, 1826 (Morgan 1953:243), with warnings from the Mexican authorities to never return to California. Despite the warnings, Smith returned to the San Bernardino Valley the following August 1827, again by way of the Cajon Pass. Detained for several months by the Mexican authorities and determined never to return, Smith was eventually allowed to leave on December 30, 1827.

Beginning in 1829, Mexican traders from New Mexico used Summit Valley and Crowder Canyon as a passageway to the Los Angeles basin and thus established what is now called the Old Spanish Trail. Anglo-American trappers and traders emanating from Taos, New Mexico (including Kit Carson), also used the route beginning in 1829. Spurred on by the demand for
California mules, this trail served as a major pack train route until the end of the Mexican period with the 1846 War with Mexico (Speer 1980:5).

The unsettled political condition of California during the 1820s and 1830s was in part due to the turmoil in Mexico in the wake of the revolution. Most disturbing in California were the decrees issued by the Mexican authorities for the secularization of the mission system. The Indians were “liberated” by decree in 1826, followed by orders for the withdrawal of the Franciscans a few years later (Elliot 1883:27). On August 17, 1833, the Mexican Congress passed the Secularization Act, which placed all mission property into the hands of civil administrators. The former Mission Indians became the most vulnerable victims in the resulting shuffle and land grab, and their numbers were rapidly decimated by disease and culture shock. Those Indians surviving on rancherías throughout the valley apparently experienced mainly a change of masters, from padre to Californio ranchero.

2.4.3 American Intrusion and Subsequent Development: 1848 to Present

Developments in the middle Mojave River Valley during the American period are closely tied to its location along a major travel corridor. As discussed above, this area was used as a trade route during both the prehistoric and early historic periods. After the Mormons colonized Utah in the mid-1800s, Salt Lake City gradually supplanted Santa Fe as a destination of commerce. The Old Spanish Trail became a favored route for Mormon settlers traveling from the Great Salt Lake to the San Bernardino area of Southern California, thus becoming known as the “Mormon Trail.” Point of Rocks, which is located near present-day Helendale, was a stopping point for many Mormon wagon trains in the 1850s (Stickel and Weinman-Roberts 1980:183). In the early 1860s, a stagecoach station was established at the site; the station was subsequently burned by the Paiute Indians in 1863.

A great impetus to growth in the area was the arrival of the California Southern Railroad. A subsidiary of the Atchison, Topeka, and Santa Fe (Santa Fe) Railway, the California Southern Railway Company began construction of a line from San Diego to Barstow in 1881. A rail station was established at Point of Rocks in 1885 to provide water for the steam engine locomotive moving trains across the Mojave Desert. In 1897, the name of the station was changed to Helen in honor of a daughter of a Santa Fe Railroad executive (Stickel and Weinman-Robert 1980:163). The community was subsequently renamed Helendale in 1918.

During the late nineteenth century and early part of the twentieth century, the middle Mojave River Valley was also the scene of mining activity. Gold and silver was first discovered in the area south of Oro Grande in the early 1870s. The Silver Mountain Mining District, which contained the Oro Grande Mine, was subsequently established in the area. Sometime during the 1880s, operations at the Oro Grande Mine were suspended due to the high costs associated with transporting ore and the scarcity of water (Vredenburgh 1992). Mining resumed at the Oro Grande Mine in the 1920s and continued intermittently until 1941.

From 1885 through 1900, the wetter and more southwesterly areas of the Mojave Desert experienced a cycle of boom and bust in pioneer settlement. Following the extension of rail transport to the desert in the 1870s and 1880s, attempts were made to establish agricultural communities in several desert regions. The most important of these were the Antelope Valley
and the upper Mojave River valley (Earle 1992, 1998:43–67; Thompson 1929:290–297, 381–384). In both of these regions, before the 1880s, stock grazing had been the principal agricultural activity. This was in areas where typically fewer than five head of cattle might be grazed per square mile, so that access to open public rangeland was essential to cattlemen (Thompson 1929:41). However, by the late 1880s, both the establishment of organized colony communities and the undertaking of homesteading or desert land entry had become common. The colonies often emphasized shared political, ethnic, or religious values among participating members, as well as community cooperation, and often counted on being able to use California’s Wright Act to build community-governed gravity-flow irrigation systems in areas downslope from desert-edge mountain ranges. In low-lying areas in the center of desert basins, such as the vicinity of dry lakes, subterranean water with artesian flow characteristics could also sometimes be exploited for at least limited irrigation purposes. In these low-lying areas, alkali-tolerant crops such as alfalfa might be grown, and cattle and other stock grazed (Earle 1998:59–67).

The historic development of Victor Valley is tied to its location along a major travel corridor. A great impetus to growth was the arrival of the California Southern Railroad in 1885 and the establishment of Victor Station. A subsidiary of the Santa Fe Railroad, the California Southern Railway Company began construction of a line from San Diego to Barstow in 1881. Victor Station, which formed the nucleus of present-day Victorville, attracted new settlers to Victor Valley, which provided arable farmland irrigated by groundwater sources and the Mojave River. In 1886, the townsite of “Victor” was laid out around the site of the rail station; the town was renamed “Victorville” in 1901 to avoid confusion with Victor, Colorado.

As settlement activity increased in Victor Valley, lands that had once been used for cattle grazing were transformed for use as farms and orchards. Agrarian, mining, and commercial activities spurred the growth of Victorville and the neighboring communities of Apple Valley, Lucerne Valley, Hesperia, Adelanto, Oro Grande, and Helendale. The discovery of large deposits of limestone and granite in the 1910s and the construction of the Southwestern Portland Cement Company plant in 1917 solidified cement manufacturing as a major industry in Victor Valley.

A further impetus to growth in the middle Mojave River Valley was the paving of the National Trails Highway, which later became U.S. Route 66, in the late 1920s. The highway paralleled the Santa Fe Railway from Victorville to Barstow passing through both Oro Grande and Helendale. Access to the transcontinental highway strengthened the region’s industrial and commercial base and brought increased settlement.

The phenomenon of desert homesteading received a further boost in the 1920s, when veterans of World War I, particularly those whose lungs had been damaged from poison gas, discovered the health benefits and therapeutic qualities of the desert climate. Adelanto itself was founded in 1915 by E. H. Richardson, who had hoped to turn the townsite into a community dedicated to the health needs of returning veterans. Although Richardson’s plan for the townsite did not come to fruition, Adelanto did become a successful agricultural area with the establishment of fruit orchards and, later, with poultry ranching.

By far the greatest increase in the phenomenon of desert homesteading took place after World War II, when restless urban and suburban populations sought recreation opportunities and weekend retreats in the California deserts. Much of the desert homesteading that took place in
Victor Valley during the 1950s was associated with the Small Tract Act of 1938, a desert homestead program in which 5 acres of land could be purchased for $10 per acre and be defined as a parcel of public lands of 5 acres or less that was found to be chiefly valuable for sale or lease as a home, cabin, camp, recreational, convalescent, or business site (Stringfellow 2009). By 1955, approximately 25,000 5-acre-tract, or “baby homestead,” permits had been issued in Joshua Tree, Twentynine Palms, Yucca Valley, Morongo Valley, Apple Valley, Lucerne Valley, Lancaster, Palmdale, and Victorville (Ainsworth 1955). However, a combination of factors, including the difficulties of desert farming and the hardships associated with rather primitive living conditions, led to the decline of desert homesteading as a viable and sustainable lifestyle.

Undoubtedly one of the greatest factors that fueled growth in the City of Victorville was the establishment of George Air Force Base in 1941, which brought military personnel, families, and associated services and industry to the region. It is also the site of the U.S. Penitentiary, Victorville, a high-security federal prison housing nearly 1,000 male inmates.

The City of Victorville was incorporated in 1962 with a population of approximately 8,110 and an area of 9.7 square miles. Since then, the City has grown substantially with a current population of 125,000 and an area of approximately 74 square miles (City of Victorville 2019).
3 SOURCES CONSULTED

3.1 CULTURAL RESOURCE LITERATURE AND RECORDS SEARCH

As part of the cultural resource constraints analysis for the Project, Æ conducted a cultural resource literature and records search at the SCCIC of the California Historical Resource Information System (CHRIS), housed at the California State University, Fullerton on August 15, 2017. The objective of this records search was to determine whether any prehistoric or historical resources had been recorded previously within the Project area plus a 1-mile-wide buffer (Study Area). In addition, prior to survey of the Project area, Æ reviewed other in-house maps and materials. The records search and in-house review indicated three cultural resource investigations have been conducted previously within the Study Area. None of these investigations specifically involved a portion of the Project area (Table 3-1).

Table 3-1
Previous Cultural Resource Investigations in the Study Area

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Date</th>
<th>SCCIC Reference #</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lord, Kenneth J.</td>
<td>2006</td>
<td>SB-05819</td>
<td>Phase I Cultural Resources Assessment and Paleontological Records Review, Victorville Acres II Project, Tentative Tract No. 17063, Victorville, San Bernardino County, California</td>
</tr>
<tr>
<td>McKenna, Jeanette</td>
<td>2007</td>
<td>SB-05915</td>
<td>A Phase I Cultural Resource Investigation of the Proposed Snowline Joint Unified School District Elementary and Middle School Site in the City of Victorville, San Bernardino County, California</td>
</tr>
<tr>
<td>Austerman, Virginia</td>
<td>2007</td>
<td>SB-06159</td>
<td>Cultural Resources Assessment, Danville Project, Tentative Tract #17024, City of Victorville, San Bernardino County, California</td>
</tr>
</tbody>
</table>

These previous investigations resulted in the identification of a total of seven previously recorded cultural resources in the Study Area (Table 3-2). All seven resources date to the historic period and include six archaeological sites (4 refuse scatters, 1 barbed-wire fence, and the Tejon Road-Lane’s Cutoff) and one built-environment resource (State Route 18).

Table 3-2
Cultural Resources within the Study Area

<table>
<thead>
<tr>
<th>Primary</th>
<th>Trinomial</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36-004418</td>
<td>CA-SBR-4418H</td>
<td>Tejon Road-Lane’s Cutoff</td>
</tr>
<tr>
<td>36-012114</td>
<td>CA-SBR-12115H</td>
<td>Refuse scatter</td>
</tr>
<tr>
<td>36-012115</td>
<td>CA-SBR-12116H</td>
<td>Refuse scatter</td>
</tr>
<tr>
<td>36-028817</td>
<td>CA-SBR-28817H</td>
<td>Refuse scatter</td>
</tr>
<tr>
<td>36-028818</td>
<td>CA-SBR-28818H</td>
<td>Refuse scatter</td>
</tr>
</tbody>
</table>
Table 3-2
Cultural Resources within the Study Area

<table>
<thead>
<tr>
<th>Primary</th>
<th>Trinomial</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36-028824</td>
<td>CA-SBR-28824H</td>
<td>Barbed-wire fence</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-012189</td>
<td>CA-SBR-12181H</td>
<td>State Route 18</td>
</tr>
</tbody>
</table>

* Cultural resources within the Project area.

One of the seven previously documented resources (36-004418/CA-SBR-4418H) is located within the Project area. This resource is described below and in Appendix B:

Site 36-004418/CA-SBR-00418H was first documented in 1981 as Tejon Road-Lane’s Cutoff as a wagon road based on historical map data (Reynolds 1981). This resource was previously evaluated formally and recommended as ineligible for listing on the CRHR (McKenna 1993).

In addition to the SCCIC research, Æ also consulted the 1902 Hesperia 15-minute USGS topographic quadrangle map, the 1942 Hesperia 15-minute US Army Corps of Engineers War Department map, the 1953 and 1966 San Bernardino 60-minute USGS topographic quadrangle maps, and the 1956 and 1968 Hesperia 7.5-minute USGS topographic quadrangle maps to assess historical land uses in the Study Area (USGS 1902, 1942, 1953, 1966, 1956, 1968). Tejon Road-Lane’s Cutoff wagon route is depicted on the 1902 and the 1942 Hesperia 15-minute maps. A segment of this road is documented within the northwest portion of the Project Area. No other structures, roads, or other features of historical interest are shown within, or in the vicinity of, the Project area on any of the historical maps.

3.2 SACRED LANDS FILE SEARCH

On August 14, 2017, Æ contacted the NAHC for a review of their SLF, to determine if any known Native American cultural properties (e.g., cultural resources, traditional use or gathering areas, places of religious or sacred activity) are present within or adjacent to the Project area. The NAHC responded on August 23, 2017, stating the SLF search was completed with negative results. The NAHC provided a list of Native American individuals and organizations to be contacted to elicit information and/or concerns regarding cultural resource issues related to the proposed Project. Æ provided the results of the NAHC SLF search and Native American contact list to the City to assist with their government-to-government consultation requirements under Assembly Bill 52 (AB 52). The NAHC file search is included as Appendix A.
4

CULTURAL RESOURCE SURVEY METHODS AND RESULTS

4.1 SURVEY METHODS

Æ Archaeologists Evan Mills and Andrew DeLeon performed an intensive pedestrian field survey of the Project area on September 26, 2019. The survey began in the northwest corner of the Project area and was completed from west to east along transects oriented north-south and spaced 10 meters apart. All portions of the Project area were accessible and surveyed systematically.

4.2 SURVEY RESULTS

The Project area is relatively level. Vegetation within the area is abundant and consists of Mojave creosote bush scrub, dry unidentified annual grasses, and sparse Joshua trees (Figure 4-1). The ground surface visibility within the Project area was generally good (80 percent visible). The entire Project is littered with modern refuse and illegal dumping of household materials (Figure 4-2). Loamy sands with abundant quartz, quartzite, and granitic gravels were observed throughout the ground surface of the Project area.

Æ archaeologists revisited the location of the previously recorded cultural resource (CA-SBR-4418H) within the Project area. No physical remnants of the Tejon Road-Lane’s Cutoff wagon road were observed at this location. No additional archaeological materials or features and no built-environment resources were observed during Æ’s survey of the Project area.
Figure 4-1 Overview from the center of the Project area (facing west).

Figure 4-2 Modern refuse in the southwest corner of the Project area (facing north).
MANAGEMENT RECOMMENDATIONS

Æ did not encounter any cultural resources at least 50 years old within the Project area during the intensive pedestrian survey. Although Tejon Road-Lane’s Cutoff (CA-SBR-4418H) is a segment of a previously documented historical archaeological site within the northwest corner of the Project area, Æ’s archaeologists did not observe any physical remnants of this site.

The ground surface throughout the entire Project area has been disturbed by modern dumping. Helendale loamy sands are mapped across the Project area; this soil series does not include a buried A horizon. Therefore, intact and significant buried archaeological deposits are unlikely, and no further cultural resource management of the Project area is recommended.

Nonetheless, in the event that potentially significant archaeological materials are encountered during construction, all work must be halted in the vicinity of the discovery until a qualified archaeologist can visit the site of discovery and assess the significance and integrity of the find. If intact and significant archaeological remains are encountered, the impacts of the Project must be mitigated appropriately. Any such discoveries, and subsequent evaluation and treatment, should be documented in a cultural resource report, which would be submitted to the SCCIC for archival purposes.

Additionally, Health and Safety Code Section 7050.5, CEQA Guidelines Section 15064.5(e), and Public Resources Code Section 5097.98 mandate the process to be followed in the unlikely event of an accidental discovery of human remains in a location other than a dedicated cemetery.

Finally, if the Project area is expanded to include areas not covered by this survey or other recent cultural resource investigations in the Study Area, additional cultural resource investigations may be required.
REFERENCES

Ainsworth, Ed

Altschul, Jeffrey H., William C. Johnson, and Matthew A. Sterner

Anderson, R. Scott

Arnold, J. E., A. Q. Duffield, R. S. Greenwood, R. P. Hampson, and T. M. Van Bueren with contributions by B. E. Lander

Basgall, M. E., K. R. McGuire, and A. J. Gilreath
1986 *Archaeological Test Excavations at CA-INY-30; A Multi-Component Prehistoric Site Near Lone Pine, Inyo County, California*. Ms. on file at the California Department of Transportation, Sacramento.

Basgall, Mark E., and D. L. True

Bean, Lowell J., and Charles R. Smith

Bean, Lowell J., and Sylvia B. Vane (editors)
Beattie, G. W., and H. P. Beattie

Berger, John A.

Bettinger, Robert L., and Martin A. Baumhoff

Campbell, E. W. C., W. H. Campbell, E. Antevs, C. A. Amsden, J. A. Barbieri, and F. D. Bode

City of Victorville

Davis, E. L.

Earle, David D.

Earle, David D., Barry L. Boyer, Reid A. Bryson, Robert U. Bryson, Mark M. Campbell, James J. Johannesmeyer, Kelly A. Lark, Cle J. Parker, Matthew D. Pittman, Luz M. Ramirez, Margaret R. Ronning, and Jackson Underwood
Elliot, W. W.

Gifford, Edward W.

Gilreath, A. J., and W. R. Hildebrandt

Grant, Campbell, James W. Baird, and J. Kenneth Pringle

Grayson, Donald K.

Hall, Matt C., and M. E. Basgall

Harrington, J. P.

Kroeber, A. L.

Lamb, S. M.

McKenna, Jeanette A.
1993 *Cultural resources Investigation, Site Inventory and Evaluation, the Cajon Pipeline Corridor Los Angeles and San Bernardino Counties*. McKenna et al Submitted to EIP Associates. Unpublished report on file the South Central Coastal Information Center, California State University, Fullerton, California.
Madsen, D., and D. Rhode (editors)
University of Utah Press, Salt Lake City.

Mehringer, P. J., Jr.

Moffitt, Linda R., and Kyle B. Moffitt
Report on file with site records for site SBCM [San Bernardino County Museum]-3176. South Central Coastal Information Center, California State University, Fullerton.

Morgan, Dale L.
1953 *Jedediah Smith and the Opening of the West.* Bison Books, Lincoln, Nebraska.

Onken, Jill A., and Melinda C. Horne

Parsons

Pigniolo, Andrew R.

Reynolds, Robert E.
1981 Site record form for CA-SBR-4418H On file at the South Central Coastal Information Center, California State University, Fullerton.

Rogers, M. J.

Sawyer, J. O.
Smith, Gerald
1963 *Archaeological Survey of the Mojave River Area and Adjacent Regions.* San Bernardino County Museum Association, San Bernardino, California.

Spaulding, W. Geoffrey

Speer, M.

Stickel, Gary E., and Lois J. Weinman-Roberts

Stringfellow, Kim

Strong, William Duncan

Sutton, Mark Q.

Sutton, Mark Q., M. E. Basgall, J. K. Gardner, and M. W. Allen
Sutton, Mark Q., and David D. Earle

Sutton, Mark Q., Joan S. Schneider, and Robert M. Yohe

Thomas, Tiffany Ann
2011 A Landscape Approach to Late Prehistoric Settlement and Subsistence Patterns in the Mojave Sink. Master’s thesis, Department of Anthropology, University of Nevada, Las Vegas.

Thompson, D. G.

United States Department of Agriculture (USDA)

United States Geological Survey (USGS)

1953 San Bernardino, Calif. 1:250,000/60-minute topographic quadrangle.

1956 Hesperia Calif. 1:24,000/7.5-minute topographic quadrangle.

1966 San Bernardino, Calif. 1:250,000/60-minute topographic quadrangle.

1968 Hesperia Calif. 1:24,000/7.5-minute topographic quadrangle.

Van Devender, T. R., and W. G. Spaulding
Vasek, F. C., and M. G. Barbour

Vredenburgh, Larry M.

Wallace, W. J.

Warren, Claude N.

Warren, Claude N., and Robert H. Crabtree

WebSoilSurvey.sc.egov.usda.gov

Wells, Stephen G., Roger Y. Anderson, Leslie D. McFadden, William J. Brown, Yehouda Enzel, and J. L. Miossec
APPENDIX A

Sacred Lands File Search
Sacred Lands File & Native American Contacts List Request

NATIVE AMERICAN HERITAGE COMMISSION
915 Capitol Mall, RM 364
Sacramento, CA 95814
(916) 653-4082
(916) 657-5390 – Fax
nahc@pacbell.net

Information Below is Required for a Sacred Lands File Search

Date: 8/14/2017

Project: KB Home – Somerset Tr 16805 - #3736

County: San Bernardino

USGS Quadrangle Name: Adalanto and Baldy Mesa
Township 5N, Range 5W Sections 19, 20, 21, 28, 29, 30, 31, 32, and 33; Township 5N, Range 6W Sections 25 and 36

Contact Person: Justin Castells

Street Address: 3550 E. Florida Avenue, Suite H

City: Hemet Zip: 92544

Phone: (951)766-2000

Fax: (951)766-0020

Email: jcastells@appliedearthworks.com

Project Description: Project consists of the development of approximately 40 acres of land within the City of Victorville, San Bernardino County, California. The project will result in ground disturbance. Applied EarthWorks, Inc. has been contracted to conduct a cultural resource study of the Project area.
Records Search location map for the KB Homes - Somerset Tr 16805 Project - AE#3736.
August 22, 2017

Justin Castells
Applied EarthWorks, Inc.

Sent by E-mail: jcastells@appliedearthworks.com

RE: Proposed KB Homes – Somerset TR 16805 (#3736) Project, City of Victorville; Baldy Mesa and Adalanto USGS Quadrangles, San Bernardino County, California

Dear Mr. Castells:

A record search of the Native American Heritage Commission (NAHC) Sacred Lands File was completed for the area of potential project effect (APE) referenced above with negative results. Please note that the absence of specific site information in the Sacred Lands File does not indicate the absence of Native American cultural resources in any APE.

Attached is a list of tribes culturally affiliated to the project area. I suggest you contact all of the listed Tribes. If they cannot supply information, they might recommend others with specific knowledge. The list should provide a starting place to locate areas of potential adverse impact within the APE. By contacting all those on the list, your organization will be better able to respond to claims of failure to consult. If a response has not been received within two weeks of notification, the NAHC requests that you follow-up with a telephone call to ensure that the project information has been received.

If you receive notification of change of addresses and phone numbers from any of these individuals or groups, please notify me. With your assistance we are able to assure that our lists contain current information. If you have any questions or need additional information, please contact via email: gayle.totton@nahc.ca.gov.

Sincerely,

[Signature]
Gayle Totton, M.A., PhD.
Associate Governmental Program Analyst
Morongo Band of Mission Indians
Robert Martin, Chairperson
12700 Pumarra Road Cahuilla
Banning, CA, 92220 Serrano
Phone: (951) 849 - 8807
Fax: (951) 922-8146

dtorres@morongo-nsn.gov

Twenty-Nine Palms Band of Mission Indians
Anthony Madrigral, Tribal Historic Preservation Officer
46-200 Harrison Place Chemehuevi
Coachella, CA, 92236
Phone: (760) 775 - 3259
amadrigral@29palmsbomi-nsn.gov

Morongo Band of Mission Indians
Denisa Torres, Cultural Resources Manager
12700 Pumarra Road Cahuilla
Banning, CA, 92220 Serrano
Phone: (951) 849 - 8807
Fax: (951) 922-8146
dtorres@morongo-nsn.gov

San Manuel Band of Mission Indians
Lee Claus, Director of Cultural Resources
28569 Community Center Drive Serrano
Highland, CA, 92346
Phone: (909) 864 - 8933
Fax: (909) 864-3370
lclaus@sanmanuel-nsn.gov

Serrano Nation of Mission Indians
Goldie Walker, Chairperson
P.O. Box 343 Serrano
Patton, CA, 92369
Phone: (909) 528 - 9027

San Fernando Band of Mission Indians
John Valenzuela, Chairperson
P.O. Box 221838 Kitanemuk
Newhall, CA, 91322 Serrano
Phone: (760) 885 - 0955
Fax: (760) 885-2449

tsen2u@hctmail.com

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 9637.94 of the Public Resource Section 9637.96 of the Public Resources Code.

This list is only applicable for contacting local Native Americans with regard to cultural resources assessment for the proposed KB Homes - Somerset Tr 18805 Project, San Bernardino County.
APPENDIX B

Cultural Resource Site Record Update
The reported location of this resource was revisited on September 26, 2019 during the reconnaissance survey for the Tentative Tract Map 20275 Project, (Abdo 2019). AE’s archaeologist revisited the segment of the previously recorded cultural resource (36-004418 [CA-SBR-4418H]) within the northwest portion of the Project area. No physical remnants of the Tejon Road-Lane’s Cutoff wagon road were observed at this location originally recorded on the San Bernardino County Museum Archaeological Site form (Reynolds 1981).

References:

Abdo, Kholoood

Reynolds, Robert E.
1981 Site record form for CA-SBR-4418H On file at the South Central Coastal Information Center, California State University, Fullerton, California.
Two segments of Site CA-SBR-4418H were re-visited in March 2007, during a historical/archaeological resources survey for a proposed road realignment project (see p. 2). No physical remnants of Tejon Road/Lane's Cutoff were observed at these locations.

Report Citation:

Smallwood, Josh, Daniel Ballester, and Laura H. Shaker
Portion of Site 36-004418 visited during a 2007 field survey

Portion of Site 36-004418 visited during a 2007 field survey
Site CA-SBR-4418H was first recorded in 1981 as the Tejon Road-Lane's Cutoff, which was a wagon road first depicted in maps dating to the turn of the 20th century (Reynolds 1981). A later study by McKenna et al. (n.d.) involving the site notes:

The physical remains [of the road] do not constitute an architectural feature and there are no artifactual remains to base research on. Failing to meet the basic criteria for eligibility and noting that ample documentation is available for this resource, McKenna et al. has concluded that this site is not an eligible resource and no further studies are necessary.

In October 2006, CRM TECH carried out a Phase I cultural resources survey of a segment of Tejon Road-Lane's Cutoff, situated in the northwest quarter of Section 1, T4N R6W, San Bernardino Base Meridian (Tang et al. 2006). The study included a historical/archaeological resources records search, historical background research, and an intensive-level field survey. The results of the historical background research indicated that Lane's Crossing, the first non-Native settlement in the Mojave River valley, was located a few miles northwest of present-day Victorville.

Lane's Crossing was named after Aaron G. Lane, a native of New Hampshire and a veteran of the Mexican War, who established a homestead and a trading post.way station at that strategic location in 1858-1859 (Thompson and Thompson 1995:51-52). From that time to the early 1880s, Lane's Crossing served as a nexus for the Salt Lake Trail and many of the later wagon roads and trails that were blazed across southern Mojave Desert, including the Tejon Road-Lane's Cutoff (Goldbrandsen n.d.:2). Fort Tejon, once an important U.S. Army post, was located approximately 70 miles northwest of Los Angeles, near the top of Grapevine Canyon.

The field survey of the segment of Tejon Road-Lane's Cutoff indicated only a slight depression, which may or may not represent the remains of the road (Tang et al. 2006:9). Consequently, it is difficult to determine conclusively whether any physical remains of the road are still present along this portion of the old road.

In sum, Site CA-SBR-4418H was previously determined not to constitute a significant archaeological resource, as mentioned above. Within the segment surveyed in 2006, it is uncertain whether any physical remains survive of the old wagon road. In any event, as one of the many secondary roads that appeared across the southern Mojave Desert during the late 19th and early 20th centuries, the Tejon Road-Lane's Cutoff does not appear to be closely associated with any persons or events of recognized historic significance, demonstrate any particular design or engineering merits, or retain any potential for important archaeological data. Therefore, the 2006 study concurred with the previous evaluation of the site, and concluded that it does not appear eligible for listing in the National Register of Historic Places or the California Register of Historical Resources (Tang et al. 2006:11).

Report Citation:

Goldbrandsen, Jean

Cont. p. 2

DPR 523L (1/95) *Required information
McKenna et al.

Reynolds, Robert E.

Tang, Bai "Tom," Clarence Bodmer, Daniel Ballester, Helios Hernandez
 2006 Historical/Archaeological Resources Survey Report: Baldy Mesa Water District Proposed 5.0-MG Reclaimed Water Reservoir Site, near the City of Victorville, San Bernardino County, California. On file, Archaeological Information Center, San Bernardino County Museum, Redlands, California.

Thompson, Richard D., and Kathryn L. Thompson
*Map Name: Baldy Mesa
*Scale: 1:24,000
*Date of Map: 1956/1996

Portion of CA-SBR-4418H surveyed
*Resource Name or #: Tejon Road-Lane's Cutoff

P1. Other Identifier: None

P2. Location: □ Not for Publication □ Unrestricted and (P2b and P2c or P2d. Attach a Location Map as necessary.)

* P2b. USGS 7.5' Quad: Baldy Mesa, CA Date: 1956 (photorevised 1988)
T. 5N; R. 5 W; SW 1/4 of SW 1/4 of Sec. 30; San Bernardino B.M.

USGS 7.5' Quad: Baldy Mesa, CA Date: 1956 (photorevised 1988)
T. 5N; R. 5 W; SE 1/4 of SW 1/4 of Sec. 30; San Bernardino B.M.

USGS 7.5' Quad: Baldy Mesa, CA Date: 1956 (photorevised 1988)
T. 5N; R. 5 W; SW 1/4 of SE 1/4 of Sec. 30; San Bernardino B.M.

e. Address: City: Victorville Zip:
d. UTM: (Give more than one for large and/or linear resources) Zone 11; 459477mE / 3816200mN (northern point)
458906mE / 3815808mN (southern point)

e. Other Locational Data: (e.g., parcel #, directions to resource, elevation, etc., as appropriate) Tejon Road-Lane's Cutoff crosses the project area from the northeast corner near Joshua Road to the southern boundary approximately half way between Baldy Mesa Road and Joshua Road. The road extends beyond the project boundaries to the northeast and southwest, respectively. Portions of the road are present in both parcels of land surveyed, APNs 3133-051-01 and 3133-071-01.

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries). Tejon Road-Lane's Cutoff was not discernible from the ground. Aerial photographs, however, reveal the road was most probably unpaved.

P3b. Resource Attributes: (List attributes and codes.)
AH7; Road

P4. Resources Present: ☐ Building ☐ Structure ☐ Object ☐ Site ☐ District ☐ Element of District ☐ Other (Isolates, etc.)

P5b. Description of Photo (View, date, accession #): None

P6. Date Constructed/Age and Sources:
☐ Historic ☐ Prehistoric ☐ Both

Captain Aaron G. Lane lends his name to the road; the road probably was not associated with him. Instead, this road acted as an alternate route to avoid paying the toll at nearby Brown's Toll Road and was consistently used prior to the establishment of Baldy Mesa Road, between ca. 1859–1880s.

P7. Owner and Address: Unknown

P8. Recorded by: (Name, affiliation, and address)
Patrick Stanton and Steve Norris
Statistical Research, Inc.
P.O. Box 390
Redlands, CA 92373

P9. Date Recorded: July 1, 2005

P10. Survey Type: (Describe): Intensive pedestrian survey

*Attachments: ☐ NONE ☐ Location Map ☐ Building, Structure, and Object Record ☐ Continuation Sheet ☐ Sketch Map ☐ Archaeological Record ☐ District Record ☐ Rock Art Record ☐ Other (List): Milling Station Record ☐ Photograph Record

DPR 523A (1/95)

*Required information
State of California—The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
ARCHAEOLOGICAL SITE RECORD

Resource Name or #: Tejon Road-Lane’s Cutoff

 As the site could not be located at ground level, no datum was placed. All dimensions and UTM coordinates were derived from aerial photographs.
 Method of Measurement: □ Paced □ Taped □ Visual estimate ■ Other: measured off aerial photograph
 Method of Determination: (Check any that apply.) □ Artifacts □ Features □ Soil □ Vegetation
 □ Topography □ Cut bank □ Animal burrow □ Excavation □ Property boundary ■ Other (Explain): Compared to map of historic trails and roads of the area

Reliability of Determination: ■ High □ Medium □ Low
(Explain): Road visible from aerial photograph, but hard to distinguish from other trails from OHVs at ground level

Limitations (Check any that apply.): □ Restricted access □ Paved/built over □ Site limits incompletely defined
□ Disturbances □ Vegetation ■ Other (Explain): Presence of OHV trails obscures Tejon Road-Lane’s Cutoff at ground level

*A2. Depth: □ None ■ Unknown
 Method of Determination: Trail could not be observed from ground level

*A3. Human Remains: □ Present ■ Absent □ Possible □ Unknown (Explain):

*A4. Features (Number, briefly describe, indicate size, list associated cultural constituents, and show location of each feature on sketch map): No features were recorded for this site.

*A5. Cultural Constituents (Describe and quantify artifacts, ecofacts, cultural residues, etc., not associated with features): None

*A6. Were Specimens Collected? ■ No □ Yes (If yes, attach Artifact Record or catalog and identify where specimens are curated.)

*A7. Site Condition: □ Good □ Fair ■ Poor (Describe disturbances): Site obscured by OHV trails; what remains is faint. Only observed from aerial photograph

*A8. Nearest Water (Type, distance, and direction): An ephemeral drainage is located 1,000 feet west of site. Sheep Creek is located approximately 7 miles to the east, and the east branch of the California aqueduct is located approximately 1 1/2 miles to the south

*A9. Elevation: 3,284 feet AMSL

A10. Environmental Setting (Describe culturally relevant variables such as vegetation, fauna, soils, geology, land form, slope, aspect, exposure, etc.): The vegetation of the region that the segment of the Tejon Road-Lane’s Cutoff transverses is of the creosote scrub community with intermittent cholla cacti and Joshua trees. The ground is relatively flat and undeveloped with sparse cover. Small ephemeral washes that drain the location during the rainy seasons are evident throughout the region.

A11. Historical Information: None

 □ Post-1945 □ Undetermined (Describe position in regional prehistoric chronology or factual historic dates if known): Tejon Road-Lane’s Cutoff was first recorded in 1981 based on historical-map data (Reynolds 1981). This route connected Lane’s Crossing on the Mojave River with Sheep Creek Road (McKenna 1993; Reynolds 1981). Lane’s Crossing was named for a way station built in 1858, about 1/2 mile south of the lower narrows of the Mojave River (approximately 9 miles northeast of the project area) by Captain Aaron G. Lane, first permanent settler on the High Desert (Thompson and Thompson 1995).

The association with Lane, however, is questionable in regards to Lane’s Cutoff. Lane’s Cutoff most likely represents a shortcut that was used by individuals who preferred not to pay the toll required to use the nearby Brown’s Toll Road, and no evidence exists that states that Lane was involved in the establishment of the road (McKenna 1993:60). The 1902 edition of the USGS Hesperia topographic quadrangle shows the road as one of several intertwined and connecting roads passing through the general vicinity at that time, but this road was probably only in use until the establishment of Baldy Mesa Road, probably between ca. 1859–1880s (McKenna 1993:60).

A13. Interpretation: (Discuss data potential, function(s), ethnic affiliation, and other interpretations): Tejon Road-Lane’s Cutoff was probably used as a means to bypass the nearby Brown’s Toll Road. Though usage of the road dropped after the establishment of the Baldy Mesa Road, the route was probably used occasionally as a short cut or for illegal dumping, as evidenced by the presence of SRI-1 (a scatter of historical-period refuse) nearby.

DPR 523C (1/95) *Required information
A14. Remarks: None

A15. References: (Documents, informants, maps, and other references)
McKenna, Jeanette A.

Reynolds, Robert E.

Thompson, Richard D. and Kathryn L. Thompson

A16. Photographs: (List subjects, direction of view, and accession numbers or attach a Photograph Record.): None

Original Media/Negatives Kept At: Statistical Research, Inc., P.O. Box 390, Redlands, CA 92373

*A17. Form Prepared by: Patrick Stanton Date: July 25, 2005
Affiliation and Address: Statistical Research, Inc., P.O. Box 390, Redlands, CA 92373

Resource Name or #: Tejon Road-Lane’s Cutoff
Resource Name or #: Tejon Road-Lane's Cutoff

Map Name: USGS Baldy Mesa, CA; USGS Adelanto, CA

Scale: 1:24,000

Date of Map: 1956 (photorevised 1988)
State of California—Department of Parks and Recreation
LINEAR FEATURE RECORD
Primary #: 36-004418
HRI #: Trinomial: CA-SBR-4418H

Page 19 of 19

Resource Name or #: Tejon Road-Lane’s Cutoff

*L1. Historic and/or Common Name: Tejon Road-Lane’s Cutoff

L2. a. Portion Described: □ Entire Resource □ Segment □ Point Observation Designation:

L2. b. Location of point or segment: (Provide UTM coordinates, legal description, and any other useful locational data. Show the area that has been field inspected on a Location Map.)

USGS 7.5' Quad: Baldy Mesa, CA Date: 1956 (photorevised 1988)
T. 5N; R. 5 W; SW ¼ of SW ¼ of Sec. 30; San Bernardino B.M.

USGS 7.5' Quad: Baldy Mesa, CA Date: 1956 (photorevised 1988)
T. 5N; R. 5 W; SE ¼ of SW ¼ of Sec. 30; San Bernardino B.M.

USGS 7.5' Quad: Baldy Mesa, CA Date: 1956 (photorevised 1988)
T. 5N; R. 5 W; SW ¼ of SE ¼ of Sec. 30; San Bernardino B.M.

Zone 11; 459477mE / 3816200mN (northern point)
458906mE / 381588mN (southern point)

Tejon Road-Lane’s Cutoff crosses the project area from the northeast corner near Joshua Road to the southern boundary approximately halfway between Baldy Mesa Road and Joshua Road. The road extends beyond the project boundaries to the northeast and southwest, respectively. Portions of the road are present in both parcels of land surveyed, APNs 3133-051-01 and 3133-071-01.

L3. Description: (Describe construction details, materials, and artifacts found at this segment/point. Provide plans/sections as appropriate.) No artifacts were found in direct association with the road. The road could not be located from the ground in the project area, though the road is visible on aerial photographs.

L4. Dimensions (In feet for historic features and meters for prehistoric features):

L4a. Top Width:
L4b. Bottom Width:
L4c. Height or Depth:
L4d. Length of Segment: 2,230 feet

L4e. Sketch of Cross Section (include scale) Facing:

L5. Associated Resources: SRI-2, a scatter of historical-period refuse, was located approximately 430 m northeast from the point where this segment of the Tejon Road-Lane’s Cutoff crosses La Mesa road. This scatter was found near the road and is probably the site of illegal dumping at some point in the past.

L6. Setting: (Describe natural features, landscape characteristics, slope, etc., as appropriate.) The vegetation of the region that the segment of the Tejon Road-Lane’s Cutoff transverses is of the creosote scrub community with the occasional cholla cactus and Joshua tree. The ground is relatively flat and undeveloped with sparse cover. Small ephemeral washes that drain the location during the rainy seasons are evident throughout the region.

L7. Integrity Considerations: Tejon Road-Lane’s Cutoff could not be accurately identified or distinguished from other roads created by off-road vehicles at ground level, even though it is evident in aerial photographs of the project area.

L8a. Photograph, Map, or Drawing

L8b. Description of Photo, Map, or Drawing: (View, scale, etc.)

L9. Remarks: None

L10. Form Prepared by:
Patrick Stanton
Statistical Research, Inc.
P. O. Box 390
Redlands, California 92373

L11. Date: July 22, 2005

*Required information
Site name: Tejon Road-Lanes Cutoff

County: San Bernardino

USGS quad maps: San Antonio (1903) 15', Phelan, Baldy Mesa 7½'

see below of of of of of of of section

Twp. ___, Rng. ___, SB Base Meridian. Elevation 3200-4300'

Distance _______ along bearing _______ from _______

UTM grid #s or lat. and long. zone 11, 461455 ME to 444250 ME

Site dimensions: area 15 miles in length depth _______

Site description, features, artifacts, owner, etc. Sec 29, 30, 21 T. 5N R. 5W, sec. 36 T. 5N R. 6W, sec 1, 2, 3, 4, 7, 8, 9, T. 4N R. 6W, sec 12, 13, 14, 15, 22 T. 4N R. 7W. The Tejon-Lanes Cutoff Road runs southwest from Lanes Crossing on the Mojave River to the road running northwest to Fort Tejon (4SBr 4415). It crosses this road and joins Sheep Creek Road (4SBr 4414) which then intersects Tejon Road South (4SBr 4417). These roads are shown on the Hesperia (1902) 15' quad and the San Antonio (1903) 15' quad.

Possibility of destruction

Other references

Informant __________ Address __________

Recorded by Robert E. Reynolds Date Jan. 1981

Address SBCM

Remarks

Sketch artifacts, site location, and features on back
CA-SBR-4418H: CA-SBR-4418H, the Tejon Road/Lane's Cut-off, is an historic wagon route located in the Phelan-Baldy Mesa area. In the vicinity of the current project area, McKenna et al. identified this alignment in the location noted by Reynolds (1981); and in this case, crosses Baldy Mesa Road between Section 36 (T5N, R6W) and Section 31 (T5N, R5W). The crossing is approximately 1.5 miles north of the California Aqueduct and .75 miles north of Duncan Road. Though Reynolds' identification was based on historic map data, McKenna et al. did identify remains of this route. An update archaeological site form has been prepared.

No artifacts were found in association with the road alignment identified by McKenna et al. The road was photographed over one mile of its course was surveyed (.5 miles either side of Baldy Mesa Road). The alignment did not appear overly overgrown or obliterated.

In investigating this resource, McKenna et al. determined that the integrity of the road alignment (in the vicinity of the Cajon Pipeline alignment) was negligible. Though ruts were visible, no artifactual remains for dating the alignment were noted. Though referred to as "Lane's Cut-Off", Lane was not an identified individual in Southern California history and no significant event is associated with the area. The physical remains do not constitute an architectural feature and there are no artifactual remains to base research on. Failing to meet the basic criteria for eligibility and noting that ample documentation is available for this resource, McKenna et al. has concluded that this site is not an eligible resource and no further studies are necessary.